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SCALING IN SENSITIVITY ANALYSIS
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Abstract. Population matrix models allow sets of demographic parameters to be sum-
marized by a single value A, the finite rate of population increase. The consequences of
change in individual demographic parameters are naturally measured by the corresponding
changes in \; sensitivity analyses compare demographic parameters on the basis of these
changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts
to deal with issues of scale by comparing the effects of proportional changesin demographic
parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this
and other problems of scaling in sensitivity analysis, and suggest a simple criterion for
choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus

orca.
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INTRODUCTION

Population matrix modeling has gained acceptance
and popularity with increasing applicationsinwildlife
management and conservation biology (Crouse et al.
1987, Doak et al. 1994, Kareiva et al. 2000, Caswell
2001) and as atool for basic ecological research (Ben-
ton and Grant 1996, Gaillard et al. 1998, Pfister 1998).
Much of the focus of population matrix modeling is
on the relation of demographic parameters to popu-
lation change, as measured by finite rate of population
increase (\) and other descriptors (Caswell 2001). In
particular, sensitivity analyses address the population
effects of changes in specific demographic parame-
ters.

The sensitivity of the rate of population increase to a
demographic parameter 6 is defined as the incremental
rate of change in \ due to incremental changes in 6:

o N
Sensitivity(\, 0) = 39"
Comparisons of sensitivities for various demographic
parameters are complicated by issues of scale: an ab-
solute change of 0.10 in a survival rate can hardly be
compared to an absolute change of 0.10 in fecundity.
For the purpose of comparison, it seems much more
reasonable to describe the effects of proportional
changesin demographic parameters. Thus, rankings are
typically based on elasticities, defined by

a log(\)
9 log(0) "
Sensitivity and elasticity are related by

Elasticity(\, ) =
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making explicit the interpretation of elasticity as the
incremental rate of proportional change in \ related to
an incremental rate of proportional change in 6.

Elasticity has been widely used to evaluate the rel-
ative importance of population projection matrix cell
entries and lower-level parameters; it has been used to
classify life-history strategies (Heppell et al. 2000,
Saether and Bakke 2000) and to determine which as-
pects of a species' life cycle should be targeted for
management action (loggerhead turtle, Caretta caretta,
Crouse et al. 1987; killer whale, Orcinus orca, Brault
and Caswell 1993; Greater Prairie Chicken, Tympan-
uchus cupido, Wisdom and Mills 1997).

The appealing feature of elasticity as a metric for
comparing the importance of demographic parameters
is that proportional changes are unitless. It certainly
does not make sense to compare absolute changes in
demographic parameters measured on distinct scales,
but it makes sense to compare the effects of propor-
tional changes—or does it?

As amotivating example we focus on the population
modeling of killer whales by Olesiuk et al. (1990) and
Brault and Caswell (1993). The population models con-
structed by the two teams of researchers were similar,
except for what one would hope would be an incon-
sequential difference of parameterization: Olesiuk et
al. (1990) analyzed their model with emphasis on mor-
tality rates, while Brault and Caswell (1993) empha-
sized survival rates. Since survival is 1 — mortality,
sensitivities to survival and mortality are of the same
magnitude, only of different sign. Thisis sensible, and
fitting: an incremental increase in survival is equal to
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an incremental decrease in mortality. The relation be-
tween elasticities of survival, S and mortality, 1 — S,
is less appealing:

dlog\
dlog S

S d log A

(1 - S)a logd — S)°
Thus, elasticities for survival and mortality will be of
differing magnitude unless S = 0.5. The potential for
inconsistent conclusions based on elasticities of sur-
vival and mortality was noted by Hunter et al. (2000)
in modeling life histories of Short-tailed Shearwaters
(Puffinus tenuirostris). Indeed, whenever S > 0.5 we
will be led to believe that survival rates are more crit-
ical to the species life history than the (surely equiv-
alent) complementary mortality rates.

In their analyses of killer whale populations, Olesiuk
et al. (1990) came to the conclusion that N was more
sensitive to changes in reproductive parameters than
changes in mortality. Brault and Caswell (1993) came
to the (apparently contradictory) conclusion that A was
more sensitive to changes in survival than in fertility.
Brault and Caswell (1993:1452) address the apparent
contradiction, beginning with the following tongue-in-
cheek commentary: ‘*Both conclusions are correct an-
alytically, but which is relevant biologically? It is per-
haps an open question whether mortality or survival is
more biologically fundamental. Optimists and pessi-
mists may disagree on the matter.”” However, they then
argue that since survival rates are high, the smallest
proportional change in survival observable (due to a
single death, or additional survivor) is smaller than the
corresponding smallest proportional change in mortal-
ity observable, concluding that *‘if the purpose of the
analysis is to shed light on the results of small but
detectable perturbations, the survival elasticitiesarethe
most relevant.”

We question this conclusion on several grounds.
First, sensitivities and elasticities are defined on the
basis of infinitesimal change, using derivatives, and
without any consideration of whether changes are de-
tectable (which depends on population size). Sensitiv-
ity and elasticity are functions of parameters, and not
of estimates of parameters.

Second, it can be shown that the ** smallest detectable
[proportional] change in survival’ is of smaller mag-
nitude than the corresponding change in mortality if
and only if S> 0.5. We question whether it is appro-
priate to label a demographic rate as more biologically
relevant than its complement, solely on the basis of
whether the rate exceeds 0.5.

Indeed, Eqg. 1 shows that S > 0.5 if and only if the
magnitude of survival’s elasticity is greater than that
of the complementary rate; thusit isimpossible for the
““morerelevant’ rate (defined on the basis of *‘ smallest
detectable change’’) to have smaller elasticity.

Finally, and most fundamentally, we suggest that an
objective ranking of the importance of demographic
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parameters ought to place equal ranks on complemen-
tary rates.

The observation that demographic parameters are
measured on different scales, which motivates the use
of elasticity for ranking, ought actually to suggest that
different scalings are appropriate for different types of
demographic parameters—one size does not fit all. Ob-
jective rankings of the importance of demographic pa-
rameters should be based on the sensitivity of A\ to
changes in q(6), where the transformation q(6) is ap-
propriately chosen for specific features of the demo-
graphic parameter 6 and the purposes of the compar-
ison. In this paper we propose a simple criterion for
choosing appropriate transformations of demographic
parameters. In certain cases, the log-transformation as-
sociated with elasticity is appropriate; for demographic
parameters that are probabilities, our criteria point to
other transformations. These have the desirable prop-
erty of placing equal ranks on the importance of com-
plementary rates.

TRANSFORMATIONS OF DEMOGRAPHIC PARAMETERS

Any demographic model, with fixed parameter val-
ues, can be equivalently and indistinguishably de-
scribed by infinitely many reparameterized models,
with the parameter values appropriately transformed.
It hardly matters whether one reports that a non-neg-
ative parameter § = 2/3, or whether one reports that
02 = 4/9.

Also, for afixed value of 0, it matters little whether
one reports the sensitivity of 6 or of any invertible
transformation q(6); the information content is the
same, one can be calculated from the other. Thus if 6
= 2/3 and Sensitivity(log \, 8) = 0.4, straightforward
application of the chain rule allows the conclusion that
Sensitivity(log A, 62) = 0.3.

For the purposes of calculation, any parameterization
will do; all are equivalent. Where the choice of param-
eterization mattersisin theinterpretation of sensitivity.
Sensitivity being intended as a measure of effects at-
tributable to changes in demographic parameters, it is
relevant to ask which scales are appropriate for de-
scribing such changes. Thus, for instance, elasticity
describes the effects on the proportional scale, doing
so by reparameterizing with « = log(6). This repara-
meterization is reasonable for some demographic pa-
rameters, but, as we have seen, leads to distressing
consequences for complementary rates. We suggest
that the choice be guided by consideration of the de-
mographic parameter as a random variable, varying
through time or space, among populations or species.
Then, it is reasonable to choose a scale on which the
variation of the parameter is independent of its mean;
under such a parameterization, the absolute magnitude
of a change has meaning independent of the value of
the parameter.

Such parameterizations are attainable, at |east to the
order of approximation of a first-order Taylor series.



December 2002

Suppose that the mean value of 6 is ., and that the
variance of 6 is related to the mean by Var(0) = f(w).
Then the delta-method approximation of the variance
for the transformed parameter q(6) is

Var(q(9)) = [q'(w)]? Var(6) = [a'(W]*H(w). (2

The transformation q(-) is referred to as a ‘“‘variance-
stabilizing transformation™ if [q'(w)]? f(r) is a con-
stant, independent of ..

Fecundities, for instance, are typically more variable
for r-selected animals than for K-selected animal's, sug-
gesting arelation such as sp(6) = k., where p = E(60),
and Kk is a proportionality constant. Thus f() = k?u2.
Setting q(p) = In(w) in Eqg. 2, we find that Var(In(0))
~ k2, regardless of the value of w; the logarithm trans-
forms the demographic parameter to a scale on which
changes are described independent of the mean.

We define a variance-stabilized sensitivity (VSS) for
a parameter 6 by

VSS,(\, 8) = Sensitivity(log X, q(6)) (3)

where () is a variance-stabilizing transformation for
6. The choice of evaluating sensitivity using log(\) or
\ being inconsequential, we have chosen our definition
for consistency with the definition of elasticity. The
foregoing discussion shows that for parameters with
distributions naturally described by mean and coeffi-
cient of variation (k), the elasticity is a variance-sta-
bilized sensitivity. For computation, we note that
an 1

VSS,(\, 6) = Em (4)

RETROSPECTIVE ANALY SIS, PROSPECTIVE ANALYSIS,
AND SCALING

Caswell (1997, 2000) provides a useful distinction
between what he terms *‘ prospective’” and ‘‘ retrospec-
tive” demographic-perturbation analysis. The distinc-
tion might also be described as **functional”” vs. ** sto-
chastic’’ analysis.

The prospective analysis asks questions about the
functional dependence of A on 6. The questions are of
a purely mathematical nature: ““If 6 is changed by this
much, how will X\ be changed?’ The question can be
asked without regard to whether such changes are bi-
ologically reasonable. Sensitivity and elasticity are an-
swers to specific prospective questions.

Retrospective analyses ask questions about stochas-
tic relations between N\ and 6: ‘““Given the functional
dependence of A on 6, and given a stochastic model
for 6, how is the variation in 6 reflected in variation
in\?’ Caswell (1997, 2000) emphasizes historical pat-
terns of variation in his definition of retrospective anal-
ysis, one could, however, carry out an analysis of sto-
chastic relations between \ and 6 under a postulated
future stochastic model for 6.

Management actions typically are directed toward
changes in \ rather than toward changes in Var(\). In
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such cases functional (prospective) analyses are ade-
quate and appropriate; indeed, ‘*an observed pattern of
variation [says nothing] about the effect of future
changesinthevital rates.” (Caswell 2000:622). If man-
agement goals are to bring about changes in Var(\)
(without regard to changes in the mean value of \),
then stochastic (retrospective) modeling has a role to
play; however, such applications require and are con-
ditional on postulated models for the stochastic behav-
ior of 6.

This distinction notwithstanding, the choice of scal-
ing for sensitivity analyses may be reasonably guided
by thinking about mean—variance relations, even for
prospective analysis. Scaling (more precisely, param-
eter transformation) is done so that changes in param-
eters are comparable. Typically, the usefulness of such
transformations is motivated by a desire to compare
changes in qualitatively different demographic param-
eters (e.g., survival rates and fecundities); however,
transformations are also useful for comparing changes
in similar demographic parameters. Anincrease of 10%
(proportional or absolute) is one thing for a survival
rate of 50%, quite a different thing for a survival rate
of 90%, and an impossibility for asurvival rate of 95%.
While prospective analyses need not ask questions that
are biologically reasonable, managers might be less
interested in asking ** What if pigs could fly?” (Caswell
2001:277). The relation between parameter values and
realizable magnitudes of changes, and the relation be-
tween mean and attainable variance of random vari-
ablesare similar: both are subject to similar constraints.

We are not advocating the use of specific historical
values of the variance of demographic parameters in
defining scaled sensitivity; our definition is based on
postulated mean—variance functional relations. We
mention this because of asuperficial similarity between
variance-stabilized sensitivity (VSS) and the quantity
Ehrlén and Van Groenendael (1998) designated LTRE
(from *“‘life table response experiment’’), viz.,

LTRE(®) = Sensitivity() X so(6).

The similarity is observed by noting, from Eqg. 2, that
if 6 has mean p. and variance Var(6) = f(p), the trans-
formation q(-) satisfying 1/q'(n) = Vf(w) is variance
stabilizing. Then, substituting 1/q'(6) = V' Var(0) in Eq.
4 yields

VSS,(, 8) = Sensitivity (0, x)SDT(e).

The difference isthat in Ehrlén and Van Groenendael’'s
(1998) development, sp(6) is aconstant (historical val-
ue), whereas in our development, sp(6) is a function
relating the variability and expected value of 6. VSS
provides an alternative scaling to elasticity, and is de-
fined for prospective analysis, rather than inferences
about the variability in \.

Tempting as it may be to duck the issue of scaling,
one cannot: even if one chooses to evaluate sensitivity
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on the ““original scale’” (whatever that may mean), one
has chosen ascale. It isdesirablethat our understanding
of the size of a change should be independent of the
actual value of the parameter; this goa is accom-
plished, at least approximately, through the use of var-
iance-stabilizing transformations. In the next section,
we apply this reasoning to choosing a scale for de-
mographic parameters that are probabilities (e.g., sur-
vival rates and transition probabilities), and hence
bounded by 0 and 1.

VARIANCE-STABILIZING TRANSFORMATIONS
FOR PROBABILITIES

Families of random variables distributed on [0, 1]
are not naturally described by their means and vari-
ances, nor by their means and coefficients of variation;
the ranges of possible values for variance and coeffi-
cient of variation depend on the mean. A variance of
0.21 is possible, but only if the mean is in the range
(0.30, 0.70); acoefficient of variation of 0.5ispossible,
but only if the mean is <0.80. These restrictions on
the feasible combinations of mean and variance arise
from the identity

0=Va(X) = nl - p ®)

for random variables X, distributed on [0, 1], with mean
. (see Appendix). The identity (Expression 5) can be
re-expressed as

Var(X) = Aw(l — ) (6

where 0 = A = 1. The value of A is not constrained
by the mean; it is a natural descriptor of the variability
of X, representing the proportion Var(X) is of the max-
imum value attainable, given the mean . It isinstruc-
tive to recall the familiar formula for the variance of
a sample proportion, viz., Var(p) = p(1 — p)/n, where
p is the population proportion and n is the sample size;
the parameter A in Eq. 6 is inversely related to the
sample size for this random variable.

Letting, f(n) = Au(l — ), q(p) = sin*(V) is
found to be a variance-stabilizing transformation for
random variables with mean—variance relation given
by Eq. 6. Using Eq. 2, we find that Var(q(X)) = A/4.
This arcsine square-root transformation may be famil-
iar for itsusein analyses of proportions; in that context,
the reparameterization allows better approximation by
models in which means and variances are functionally
independent.

Demographic parameters that are probabilities (such
as survival and transition rates) are likely to be appro-
priately modeled as satisfying Eq. 6. The resulting var-
iance-stabilized sensitivity (VSS) metric has the pleas-
ing property that

VSS,(\, 0) = —VSS,(\, 1 — 0) )

so rankings of demographic parameters and their com-
plementary rateswill be equal; optimists and pessimists
need no longer disagree.
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under two mean-variance relations. The solid line is Var(X)
= Ap(l — p), (Eq. 6) with A = 1; the dashed line is Var(X)
= Bp2(1 — w)? (Eq. 8) with B = 4.

A DIFFICULTY—SPECIFICATION OF
MEAN—VARIANCE RELATION

A difficulty with using variance-stabilized sensitivity
is choosing the appropriate mean—variancerelation. For
w00, 1], p3(1 — )2 = (1l — p), soitisconceivable
that the mean—variance relation for a demographic
probability might be specified as

Var(d) = BpX(1 — p)? (®

rather than by Eq. 6. A related variance-stabilizing
transformation is based on the logit transformation,
q(r) = logit(p) = In(/(1 — w)). The variance-stabi-
lized sensitivity based on the logit transformation sat-
isfies Eq. 7: just as with, g(p) = sin-%(\/), optimists
and pessimists can be in accord. How then does one
choose between Egs. 6 and 8, between arcsine-stabi-
lized and logit-stabilized sensitivity?

The answer can only be that it depends on whether
one believes Eq. 6 or Eq. 8 to be the correct description
of the relevant mean—variance relation. It is notewor-
thy, however, that the range of admissible values for
B depends on the value of w; Bu(l — ) must not
exceed 1, so that the largest possible uniformly ac-
ceptable value for B is 4 (Fig. 1). The specification 0
= B = 4 is unnecessarily restrictive when . is close
to 0 or 1, and might only be justified on questionable
retrospective grounds.

While it may be difficult to choose between Eq. 6
and Eqg. 8, it ought generally to be easy to rule out
inappropriate mean—variance relations. Thus, for in-
stance, mean—variance relations for demographic prob-
abilities that do not lead to variance-stabilized sensi-
tivities satisfying Eq. 7 may be confidently dismissed.
We suggest as well that in application to demographic
parameters, the use of Eq. 8 rather than Eq. 6 would
likely be justifiable only on retrospective grounds,
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making Eq. 6 the more appealing option for prospective
analyses.

ANOTHER DIFFICULTY—SCALING THE VARIANCE-
STABILIZING TRANSFORMATION

Another difficulty with using variance stabilization
as the basis of scaling for sensitivity analysis is that,
even having chosen a specific general formulation for
the mean—variance relation of a parameter, the vari-
ance-stabilizing transformation is not uniquely deter-
mined. Using, for instance, Eq. 6 as descriptive of the
mean—variance relation, we observed that q(p) =
sin"i(V) is a variance-stabilizing transformation,
with Var(q(8)) = A/4. Clearly, any scalar multiple of
q(p) isalso variance stabilizing. From Eq. 4, itiseasily
seen that if, g,(n) = cq,(pn), where c is a scalar, the
scaled sensitivity measures will differ by a multipli-
cative factor of c. Which value of ¢ should be used?

If all of the demographic parameters under consid-
eration were probabilities, all with mean—variance re-
lation given by Eqg. 6, it could be argued that the choice
would not matter, so long as the same transformation
were applied to all. The variances of the transformed
variables would be qualitatively equivalent.

If some demographic probabilities were to be arc-
sine square-root transformed, while others were to be
logit transformed, it seems sensible to multiply the for-
mer by 2, and the latter by %. Here is why: if Var(6)
= Ap(l — p), Var(2 sin"3(V6)) = A, where0 = A =
1. Under the mean—variance relation Var(6) = Bp?(1
— )%, with B bounded by 4 (its largest uniformly ad-
missible value), Var(¥:logit(8)) = B/4 = A’, where O
= A’ = 1. Inboth cases, the variance of the transformed
parameter is approximately independent of the ex-
pected value of the parameter, and is interpretable as
a proportion of the maximum attainable variance on
the original scale.

However, suppose that some of the demographic pa-
rameters are probabilities, and others are fecundities,
with mean—variance relation f(u) = k?w? leading to the
log-transformation, and variance of k? on the trans-
formed scale. If it were possible to specify a maximum
coefficient of variation, k., for such fecundities, the
transformation q(0) = log(0)/k.. would produce a new
parameter with variance approximately independent of
its expected value, again interpretable as a proportion
of the maximum attainable variance on the original
scale. This option might lose some of its appeal if the
choice of k., is arbitrary.

These difficulties may be sidestepped by focusing on
the components of fecundity that are probabilities (e.g.,
hatching success, percentage breeders, and fledging
success) and comparing these probabilities, rather than
fecundity itself, with other demographic probabilities
of interest, applying the same transformation to all of
the demographic probabilities. For some long-lived an-
imals, the maximum individual fecundity is 1; the av-
erage number of offspring is then interpretable as a
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probability, and thus directly comparable to other prob-
abilities in the model. In the next section we more
closely examine the killer whale example of Olesiuk
et al. (1990) and Brault and Caswell (1993), in which
this is the case.

KILLER WHALES AND
VARIANCE-STABILIZED SENSITIVITY

Olesiuk et al. (1993) employed a two-sex, age-based
population projection matrix model in examining the
sensitivity of N\ to a number of lower-level vital rates.
Brault and Caswell (1993) used a stage-based popu-
lation matrix model to address similar questions. Both
models gave similar estimates of A and reproductive
values (Brault and Caswell 1993). However, as pre-
viously mentioned, Olesiuk et al. (1990) focused on
mortality rates, w;, in their sensitivity analyses, whereas
Brault and Caswell (1993) focused on survival rates,o;,
leading to different conclusions about which vital rates
\ is most sensitive to.

Having noted that the inconsistent conclusions ob-
tained by the two sets of authors are in fact artifacts
of the use of elasticity for ranking the importance of
demographic parameters, we decided to evaluate the
demographic parameters these authors considered, us-
ing the variance-stabilized sensitivity (VSS) we have
defined in this paper. We reconstructed the stage-based
model of Brault and Caswell (1993; see Brault and
Caswell for details) and calculated sensitivities, elas-
ticities, and VSS for the lower-level parametersin each
of these parameterizations; survival or mortality prob-
abilities o; (or) w; = 1 — o), growth probabilities (vy;),
and mean offspring production (m). We treated calving
as a Bernoulli trial; the probability of calving is es-
sentially the same as the mean number of offspring
since killer whales rarely produce twins. Thus we used
the arcsine square-root VSS, i.e.,

a log \ <\/9(19)>@

2 sn (Vo) \ PR

as a comparative measure of the importance of mean
number of offspring, survival (or mortality), and
growth rates.

Sensitivities to survival and mortality only differ by
sign, whereas elasticities differ in magnitude (Table 1).
It can clearly be seen why Brault and Caswell (1993)
considered \ to be most sensitive to survival and Olis-
iuk et al. (1990) considered \ to be most sensitive to
fertility (m), thus leading to differing management rec-
ommendations. However, when using the arcsine VSS
transformation, we conclude that A\ is most sensitive
(negatively) to changes in vy; (—0.122), the rate at
which whales leave the adult reproductive stage and
enter the post-reproductive stage. The VSS of \ to fer-
tility is a close second (0.115).

DiscussioN

Comparisons of the sensitivity of A\ to demographic
parameters varying on different scales requires care;
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TABLE 1.
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Sensitivities of the finite rate of population increase, A\, to lower-level vital rates

for killer whales. Results are presented for the popul ation matrix model of Brault and Caswell

(1993).

Parameterized with survival, o

Parameterized with mortality, o

Para- Arcsine Para- Arcsine
meter Sensitivity Elasticity VSS meter Sensitivity  Elasticity VSS
o, 0.0453 0.0422 0.0091 N —0.0453 —0.0020 —0.0091
o, 0.3941 0.3785 0.0472 [o% —0.3941 —0.0059 —0.0472
o3 0.5735 0.5585 0.0209 oN —0.5735 —0.0008 —0.0209
A 0 0 0 w, 0 0 0

Y2 0.2062 0.0150 0.0529 Yo 0.2062 0.0150 0.0529
Vs —0.5999 —0.0265 -0.1217 Vs —0.5999 —0.0265 -0.1217
m 0.3649 0.0422 0.1151 m 0.3649 0.0422 0.1151

Notes: The model is parameterized with survival (og4.; Brault and Caswell 1993), as well
as with mortality (wg.ge; sensu Olesiuk et al. 1990). Transition probabilities (yg.e) and mean
offspring production (m) are as defined in Brault and Caswell (1993). Log-scaled sensitivities
differ with complentary rates (survival vs. mortality) while arcsine-scaled sensitivities do not.

the apparently contradictory conclusions of Brault and
Caswell (1993) and Olesiuk et al. (1993) are merely
artifacts of the definition of elasticity. We suggest that
comparisons of the importance of demographic param-
eters require the selection of appropriate scales, and
that these scales can be chosen by consideration of the
demographic parameters as realizations of stochastic
processes. We do not mean to blur the distinction be-
tween prospective and retrospective analyses by this
suggestion; our recommendations are intended for pro-
spective (functional) analyses of the effects on A of
demographic parameters. Our suggestion is that the
functional relations taken into consideration ought to
include functional relations between the mean and var-
iance of the demographic parameters, regarded as sto-
chastic processes. The functional relation between the
mean and variance of any random variable distributed
on the unit interval suggests that the arcsine square-
root scale is appropriate for comparisons of demo-
graphic probabilities.

We agree with Nicholsand Hines' (2002) and Heppel
et al.’s (2000) views that focusing solely on elasticities
for insight into management actions is not wise. Nich-
ols and Hines (2002) suggest that elasticities ought to
be considered in conjunction with the influence of man-
agement actions on parameters of interest, as well as
the cost of such management actions in a decision-
theoretic framework as auseful conceptual guide. They
suggest a metric that, expressed in the notation of this

paper, is

m(6) a log A (a log e)a_x

:aloge ax ] ay

where 6 is ademographic parameter, x is a management
action and y is the cost associated with the action. This
metric, which reduces to proportional changesin \ per
dollar spent, is especially attractive in that it not only
focuses on realistic management actions and objec-
tives, but also avoids the issue of scale: the relevant
scale for management decisions may often be cost.

The utility of population matrix models in manage-
ment and in addressing questions of evolutionary ecol-
ogy has grown in recent years. We believe the use of
appropriately scaled variance-stabilized sensitivities
(VSS), aswe have advocated here, will further advance
such uses, while avoiding conclusions based on inap-
propriate scalings.
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APPENDIX
VARIANCE BOUNDS FOR RANDOM VARIABLES DISTRIBUTED ON THE UNIT INTERVAL

Therelation 0 = Var(X) = p(1 — p) for random variables
X with distributions restricted to the interval [0, 1] is easily
established. Clearly, X? = X, from which it follows that the
expected value of X? is less than the expected value of X.
Subtracting the square of the expected value of X from both
sides of the inequality, we have

EC®) — [EX))? = E(X) — [E(X)]?

Recognizing the left-hand side of this equation as equiv-
alent to Var(X), which must be non-negative, and substi-
tuting . for E(X), we obtain, 0 = Var(X) = p — p?, the
desired result.



